YOLOv9改进策略 | 添加注意力篇 | LSKAttention大核注意力机制助力极限涨点 (附多个位置添加教程)

 一、本文介绍 

本文给大家带来的改进机制是LSKAttention大核注意力机制应用于YOLOv9。它的主要思想是将深度卷积层的2D卷积核分解为水平和垂直1D卷积核,减少了计算复杂性和内存占用。接着,我们介绍将这一机制整合到YOLOv9的方法,以及它如何帮助提高处理大型数据集和复杂视觉任务的效率和准确性。本文还将提供代码实现细节和使用方法展示这种改进对目标检测等方面的效果。通过实验YOLOv5在整合LSKAttention机制后,亲测mAP有显著提高(下面会附上改进LSKAttention机制和基础版本的结果对比图)。

专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

目录

 一、本文介绍 

二、LSKAttention的机制原理 

三、LSKAttention的核心代码

四、手把手教你将LSKAttention添加到你的网络结构中

4.1 LSKAttention添加步骤

4.1.1 修改一

4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 LSKAttention的yaml文件和训练截图

4.2.1 LSKAttention的yaml版本一(推荐)

4.2.2 LSKAttention的yaml版本二

4.2.3 LSKAttention的yaml版本三

4.3 LSKAttention的训练过程截图 

五、本文总结


二、LSKAttention的机制原理 

论文地址:官方论文地址

代码地址:官方代码地址

《Large Separable Kernel Attention》这篇论文提出的LSKAttention的机制原理是针对传统大核注意力(Large Kernel Attention,LKA)模块在视觉注意网络(Visual Attention Networks,VAN)中的应用问题进行的改进。LKA模块在处理大尺寸卷积核时面临着高计算和内存需求的挑战。LSKAttention通过以下几个关键步骤和原理来解决这些问题:

  1. 核分解:LSKAttention的核心创新是将传统的2D卷积核分解为两个1D卷积核。首先,它将一个大的2D核分解成水平(横向)和垂直(纵向)的两个1D核。这样的分解大幅降低了参数数量和计算复杂度。

  2. 串联卷积操作:在进行卷积操作时,LSKAttention首先使用一个1D核对输入进行水平方向上的卷积,然后使用另一个1D核进行垂直方向上的卷积。这两步卷积操作串联执行,从而实现了与原始大尺寸2D核相似的效果。

  3. 计算效率提升:由于分解后的1D卷积核大大减少了参数的数量,LSKAttention在执行时的计算效率得到显著提升。这种方法特别适用于处理大尺寸的卷积核,能够有效降低内存占用和计算成本。

  4. 保持效果:虽然采用了分解和串联的策略,LSKAttention仍然能够保持类似于原始LKA的性能。这意味着在处理图像的关键特征(如边缘、纹理和形状)时,LSKAttention能够有效地捕捉到重要信息。

  5. 适用于多种任务:LSKAttention不仅在图像分类任务中表现出色,还能够在目标检测、语义分割等多种计算机视觉任务中有效应用,显示出其广泛的适用性。

总结:LSKAttention通过创新的核分解和串联卷积策略,在降低计算和内存成本的同时,保持了高效的图像处理能力,这在处理大尺寸核和复杂图像数据时特别有价值。

上图展示了在不同大核分解方法和核大小下的速度-精度权衡。在这个比较中,使用了不同的标记来代表不同的核大小,并且以VAN-Tiny作为对比的模型。从图中可以看出,LKA的朴素设计(LKA-trivial)以及在VAN中的实际设计,在核大小增加时会导致更高的GFLOPs(十亿浮点运算次数)。相比之下,论文提出的LSKA(Large Separable Kernel Attention)-trivial和VAN中的LSKA在核大小增加时显著降低了GFLOPs,同时没有降低性能 

上图展示了大核注意力模块不同设计的比较,具体包括:

  1. LKA-trivial:朴素的2D大核深度卷积(DW-Conv)与1×1卷积结合(图a)。
  2. LSKA-trivial:串联的水平和垂直1D大核深度卷积与1×1卷积结合(图b)。
  3. 原始LKA设计:在VAN中包括标准深度卷积(DW-Conv)、扩张深度卷积(DW-D-Conv)和1×1卷积(图c)。
  4. 提出的LSKA设计:将LKA的前两层分解为四层,每层由两个1D卷积层组成(图d)。其中,N代表Hadamard乘积,k代表最大感受野,d代表扩张率​​。

个人总结:提出了一种创新的大型可分离核注意力(LSKA)模块,用于改进卷积神经网络(CNN)。这种模块通过将2D卷积核分解为串联的1D核,有效降低了计算复杂度和内存需求。LSKA模块在保持与标准大核注意力(LKA)模块相当的性能的同时,显示出更高的计算效率和更小的内存占用。


三、LSKAttention的核心代码

使用方式看章节四

import torch
import torch.nn as nn


def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

class LSKA(nn.Module):
    def __init__(self, dim, k_size):
        super().__init__()

        self.k_size = k_size

        if k_size == 7:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,2), groups=dim, dilation=2)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=(2,0), groups=dim, dilation=2)
        elif k_size == 11:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,4), groups=dim, dilation=2)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=(4,0), groups=dim, dilation=2)
        elif k_size == 23:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 7), stride=(1,1), padding=(0,9), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(7, 1), stride=(1,1), padding=(9,0), groups=dim, dilation=3)
        elif k_size == 35:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 11), stride=(1,1), padding=(0,15), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(11, 1), stride=(1,1), padding=(15,0), groups=dim, dilation=3)
        elif k_size == 41:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 13), stride=(1,1), padding=(0,18), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(13, 1), stride=(1,1), padding=(18,0), groups=dim, dilation=3)
        elif k_size == 53:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 17), stride=(1,1), padding=(0,24), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(17, 1), stride=(1,1), padding=(24,0), groups=dim, dilation=3)

        self.conv1 = nn.Conv2d(dim, dim, 1)


    def forward(self, x):
        u = x.clone()
        attn = self.conv0h(x)
        attn = self.conv0v(attn)
        attn = self.conv_spatial_h(attn)
        attn = self.conv_spatial_v(attn)
        attn = self.conv1(attn)
        return u * attn


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.Attention = LSKA(c2, 11)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.Attention(self.cv2(self.cv1(x))) if self.add else self.Attention(self.cv2(self.cv1(x)))

class C3_LSKA(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))


四、手把手教你将LSKAttention添加到你的网络结构中

4.1 LSKAttention添加步骤

4.1.1 修改一

首先我们找到如下的目录'yolov9-main/models',然后在这个目录下在创建一个新的目录然后这个就是存储改进的仓库,大家可以在这里新建所有的改进的py文件,对应改进的文件名字可以根据你自己的习惯起(不影响任何但是下面导入的时候记住改成你对应的即可),然后将LSKAttention的核心代码复制进去。

 


4.1.2 修改二

然后在新建的目录里面我们在新建一个__init__.py文件(此文件大家只需要建立一个即可),然后我们在里面添加导入我们模块的代码。注意标记一个'.'其作用是标记当前目录。

​​


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加)

注意的添加位置要放在common的导入上面!!!!!

​​​​​


4.1.4 修改四

然后我们找到''models/yolo.py''文件中的parse_model方法,按照如下修改->

        elif m in {LSKA}:
            c2 = ch[f]
            args = [c2, *args]

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 LSKAttention的yaml文件和训练截图

下面推荐几个版本的yaml文件给大家,大家可以复制进行训练,但是组合用很多具体那种最有效果都不一定,针对不同的数据集效果也不一样,我不可能每一种都做实验,所以我下面推荐了几种我自己认为可能有效果的配合方式,你也可以自己进行组合。


4.2.1 LSKAttention的yaml版本一(推荐)

下面的添加LSKAttention是我实验结果的版本,我仅在大目标检测层的输出添加了一个LSKAttention模块,就涨点了0.05左右,所以大家可以在中等和小目标检测层都添加LSKAttention模块进行尝试,下面的yaml文件我会给大家推荐。

# YOLOv9

# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3
   # conv down
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5
   # conv down
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7
   # conv down
   [-1, 1, Conv, [512, 3, 2]],  # 8-P5/32
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)
   [-1, 1, LSKA, []],  # 17 添加一行我们的改进机制

   # conv-down merge
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)
   [-1, 1, LSKA, []],  # 21 添加一行我们的改进机制

   # conv-down merge
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 24 (P5/32-large)
   [-1, 1, LSKA, []],  # 25 添加一行我们的改进机制

   # routing
   [5, 1, CBLinear, [[256]]], # 26
   [7, 1, CBLinear, [[256, 512]]], # 27
   [9, 1, CBLinear, [[256, 512, 512]]], # 28
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 29-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 30-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 31

   # conv down fuse
   [-1, 1, Conv, [256, 3, 2]],  # 32-P3/8
   [[26, 27, 28, -1], 1, CBFuse, [[0, 0, 0]]], # 33

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 34
   [-1, 1, LSKA, []],  # 35 添加一行我们的改进机制

   # conv down fuse
   [-1, 1, Conv, [512, 3, 2]],  # 36-P4/16
   [[27, 28, -1], 1, CBFuse, [[1, 1]]], # 37

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38
   [-1, 1, LSKA, []],  # 39 添加一行我们的改进机制

   # conv down fuse
   [-1, 1, Conv, [512, 3, 2]],  # 40-P5/32
   [[28, -1], 1, CBFuse, [[2]]], # 41

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 42
   [-1, 1, LSKA, []],  # 43 添加一行我们的改进机制

   # detect
   [[35, 39, 43, 17, 21, 25], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]


4.2.2 LSKAttention的yaml版本二

添加的版本二具体那种适合你需要大家自己多做实验来尝试。

# YOLOv9

# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3
   # conv down
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5
   # conv down
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7
   # conv down
   [-1, 1, Conv, [512, 3, 2]],  # 8-P5/32
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   [-1, 1, LSKA, []],  # 添加一行我们的改进机制
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 11

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)

   # conv-down merge
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)

   # conv-down merge
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)
   
   # routing
   [5, 1, CBLinear, [[256]]], # 24
   [7, 1, CBLinear, [[256, 512]]], # 25
   [9, 1, CBLinear, [[256, 512, 512]]], # 26
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 27-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 28-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29

   # conv down fuse
   [-1, 1, Conv, [256, 3, 2]],  # 30-P3/8
   [[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32

   # conv down fuse
   [-1, 1, Conv, [512, 3, 2]],  # 33-P4/16
   [[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35

   # conv down fuse
   [-1, 1, Conv, [512, 3, 2]],  # 36-P5/32
   [[26, -1], 1, CBFuse, [[2]]], # 37

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38

   # detect
   [[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

 


4.2.3 LSKAttention的yaml版本三

# YOLOv9

# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3
   # conv down
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5
   # conv down
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7
   # conv down
   [-1, 1, Conv, [512, 3, 2]],  # 8-P5/32
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   [-1, 1, LSKA, []],  #  11 添加一行我们的改进机制

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)

   # conv-down merge
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)

   # conv-down merge
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)
   
   # routing
   [5, 1, CBLinear, [[256]]], # 24
   [7, 1, CBLinear, [[256, 512]]], # 25
   [9, 1, CBLinear, [[256, 512, 512]]], # 26
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 27-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 28-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29

   # conv down fuse
   [-1, 1, Conv, [256, 3, 2]],  # 30-P3/8
   [[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32

   # conv down fuse
   [-1, 1, Conv, [512, 3, 2]],  # 33-P4/16
   [[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35

   # conv down fuse
   [-1, 1, Conv, [512, 3, 2]],  # 36-P5/32
   [[26, -1], 1, CBFuse, [[2]]], # 37

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38

   # detect
   [[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

 


4.3 LSKAttention的训练过程截图 

下面是添加了 LSKAttention的训练截图。

大家可以看下面的运行结果和添加的位置所以不存在我发的代码不全或者运行不了的问题大家有问题也可以在评论区评论我看到都会为大家解答(我知道的)。

​​

​​​​​​


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

希望大家阅读完以后可以给文章点点赞和评论支持一下这样购买专栏的人越多群内人越多大家交流的机会就更多了。  

专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/574187.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

面试经典150题——路径总和

​ 1. 题目描述 2. 题目分析与解析 2.1 思路一 注意题目的关键点:判断该树中是否存在 根节点到叶子节点 的路径,起点是root,终点是叶子节点。 那么我们就可以从根节点按照层序遍历的方式,从根节点从根到 叶子不断对路径进行加…

MPC的横向控制与算法仿真实现

文章目录 1. 引言2. 模型预测控制(MPC)2.1 基础知识2.2 MPC的整体流程2.3 MPC的设计求解 3. 车辆运动学MPC设计4. 算法和仿真实现 1. 引言 随着智能交通系统和自动驾驶技术的发展,车辆的横向控制成为了研究的热点。横向控制指的是对车辆在行…

vue3环境搭建

环境准备: node环境(node.js官网)npm环境 上述两个环境存在版本要求所以安装最新的靠谱(旧的环境存在不支持现象) windows电脑 安装完node.js会带有npm mac电脑本身自带node和npm,但是需要升级 进入到你想创建前端项目的文件夹:…

C++初识内存管理和模版

目录 前言 1.C/C内存分布 2. C的内存管理方式 2.1 new/delete操作内置类型 2. new和delete操作自定义类型 3. operator new和operator delete函数 4. new和delete的实现原理 4.1 内置类型 4.2 自定义类型 5. malloc/free和new/delete的区别 6. 初识模版 6.1 泛型编…

【python笔记】datafram的时间动态可视化 pyecharts地图

import pandas as pd# 假设DataFrame是这样的: df pd.DataFrame({ year: [2014, 2015, 2016, 2014, 2015, 2016, 2014, 2015, 2016], province: [广东省, 广东省, 河南省, 湖南省, 北京市, 北京市, 上海市, 新疆维吾尔自治区, 上海市], values: [100, 150, 75…

井字棋源码(网络线程池版)

源码链接&#xff1a;game 效果可能没有那么好&#xff0c;大家可以给点建议。 效果展示 game.h #include <stdio.h> #include <stdlib.h> #include <time.h>#define ROW 3 #define COL 3void InitBoard(char board[ROW][COL], int row, int col) {int i…

如何在linux服务器上用Nginx部署Vue项目,以及如何部署springboot后端项目

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、打包Vue项目二、安装Nginx1.更新系统的软件包信息&#xff1a;2.安装Nginx&#xff1a;3.启动 Nginx 服务&#xff1a;安装完成后&#xff0c;Nginx 服务会…

C语言进阶:指针的进阶(上)

首先 在学习新知识之前 我们先来回顾下之前的学习的内容 1 指针是个变量 用来存放地址 地址唯一标识的一块内存空间 2 指针的大小是固定的4/8字节&#xff08;32位平台/64位平台&#xff09; 3 指针有类型的 指针的类型决定了两点 一个是指针操作的权限以及整数的步长 4 指针的…

「deepin生态共建小组」正式启动招募!三大生态共建项目,速来 !

基于社区开源精神&#xff0c;为提高大家对deepin生态建设的参与感&#xff0c;应用商店将正式开放众多软件给广大开源爱好者进行维护。参与小组工作可获得多项专属小组福利&#xff0c;工作项目分为玲珑格式迁移、wine应用打包、deb原生应用维护。 招募条件 1&#xff09;不限…

vivado Versal 串行 I/O 硬件调试流程、使用 Vivado Serial I/O Analyzer 来调试设计

Versal 串行 I/O 硬件调试流程 Versal ™ ACAP 无需再生成 IBERT IP &#xff0c; 因为使用系统内串行 I/O 调试所需的必要逻辑现已集成到 GTY 收发器架构内。使 用 GTY 收发器的任何设计均可用于串行 I/O 硬件调试。 Versal 串行 I/O 硬件调试流程具有 2 个不同阶…

蓝桥杯python考级整理

4_1:算术运算符 4_2:基本语法 4_3:基本语法 4_4:列表 4_5:函数 4_6:字符串 4_7:列表 4_8:逻辑运算符 4_9:字典 4_10:函数

CSS中的 5 类常见伪元素详解!

你好&#xff0c;我是云桃桃。 一个希望帮助更多朋友快速入门 WEB 前端的程序媛。 云桃桃-大专生&#xff0c;一枚程序媛&#xff0c;感谢关注。回复 “前端基础题”&#xff0c;可免费获得前端基础 100 题汇总&#xff0c;回复 “前端工具”&#xff0c;可获取 Web 开发工具合…

InternLM2-lesson5

目录 大模型部署挑战常用大模型部署方式模型剪枝(Pruning)知识蒸馏量化 LMDeploy核心功能性能表现支持部署的模型 作业配置 LMDeploy 运行环境以命令行方式与 InternLM2-Chat-1.8B 模型对话 大模型部署 大模型部署就是将大模型在特定的环境种运行&#xff01;可以部署到服务器…

day13 ts后端持久层框架(java转ts全栈/3R教室)

简介&#xff1a;如果说TS全栈后端开发最重要的两个框架&#xff0c;除了nestjs就是持久层框架了&#xff0c;这里主要看下Typeorm&#xff08;java中常用的就是mybatis&#xff0c;springdatajpa&#xff0c;hebernite了&#xff09; 先回顾下ORM的概念&#xff1a;ORM就是建…

好用的在线客服系统PHP源码(开源代码+终身使用+安装教程) 制作第一步

创建一个在线客服系统是一个涉及多个步骤的过程&#xff0c;包括前端界面设计、后端逻辑处理、数据库设计、用户认证、实时通信等多个方面。以下是使用PHP制作在线客服系统的第一步&#xff1a;需求分析和系统设计。演示&#xff1a;ym.fzapp.top 第一步&#xff1a;需求分析 确…

Linux:进程创建 进程终止

Linux&#xff1a;进程创建 & 进程终止 进程创建fork写时拷贝 进程终止退出码strerrorerrno 异常信号exit 进程创建 fork fork函数可以用于在程序内部创建子进程&#xff0c;其包含在头文件<unistd.h>中&#xff0c;直接调用fork()就可以创建子进程了。 示例代码&…

暴雨亮相CCBN2024 助力广电行业数智化转型

4月23日&#xff0c;第三十届中国国际广播电视信息网络展览会&#xff08;简称CCBN2024&#xff09;在北京开展&#xff0c;本次展览会由国家广播电视总局指导、广播电视科学研究院主办&#xff0c;作为国内广电视听领域首个综合性、专业化、引领性、国际化科技产业盛会&#x…

【树莓派】如何用电脑连接树莓派的远程桌面,灰屏解决

要使用VNC桌面连接到树莓派&#xff0c;你需要确保已经安装并启动了VNC服务器。以下是连接到树莓派的步骤&#xff1a; 在树莓派上启动VNC服务器&#xff1a; 打开终端或SSH连接到你的树莓派。输入以下命令以安装RealVNC的VNC服务器&#xff1a;sudo apt update sudo apt insta…

第十讲:C语言指针(4)

目录 1、回调函数是什么&#xff1f; 2、qsort使⽤举例 2.1、使⽤qsort函数排序整型数据 2.2、使⽤qsort排序结构数据 3、qsort函数的模拟实现 4、sizeof和strlen的对⽐ 4.1、sizeof 4.2、strlen 4.3、sizeof 和 strlen的对⽐ 5、数组和指针笔试题解析 5.1、⼀维数组…

java-反射

简介 获取class对象的API // 1. 通过类名.class Class<Student> clazz Student.class; System.out.println(clazz.getName());// 2. 通过Class.forName()方法 Class<?> clazz2 null; try {clazz2 Class.forName("com.reflect.Student");System.out.p…